کاشت میلگرد در بتن

روش اجرای کاشت میلگرد در بتن

در فیلم کوتاه زیر نحوه کاشت میلگرد در بتن را خواهید دید:

کاشت میلگرد در بتن
پخش ویدیو

روش اجرای کاشت میلگرد و بولت در بتن

کاشت میلگرد چیست و به چه منظور انجام می گیرد؟

کاشت میلگرد از جمله عملیات پرکاربرد در امر ساخت و ساز می باشد که طیف وسیعی از اتصالات سازه ای و غیر سازه ای را در بر میگیرد که به منظور تقویت و مقاوم سازی سازه ها و همچنین جهت الحاق اجزاء سازه ای جدید به سازه ی موجود انجام می شود.

یکی از موارد پر کاربرد در بحث کاشت میلگرد، کاشت میلگرد در فُنداسیون می باشد، کاشت میلگرد در فنداسیون معمولاً برای رسیدن به یکی از اهداف زیر در پروژه صورت می گیرد:

یکپارچه کردن و یا رادیه کردن فنداسیون موجود.

  • افزایش ارتفاع فنداسیون به جهت باربری بهتر
  • اصلاح ابعادی فنداسیون
  • الحاق فنداسیون سازه ای جدید به فنداسیون موجود
  • اجرای ستون جدید روی فنداسیون موجود.

برای تحقق هر یک از اهداف بالا ابتدا لازم است روش کاشت توسط کارشناس مربوطه با توجه به چگونگی اعمال بار (برشی و یا کششی) و همچنین محل قرارگیری میلگردهای مدفون در فنداسیون، پیشنهاد گردد تا از آسیب رساندن به میلگردهای فنداسیون جلوگیری شود. در صورت اعمال لطمه به میلگردهای فنداسیون در روش حفر به وسیله دستگاه کرگیر به صورت قابل ملاحظه ای میزان باربری آن کاهش خواهد یافت بنابراین پیشنهاد می گردد حفر به روش دریلینگ انجام گیرد.

اجرای کاشت میلگرد در بتن

همانطور که پیشتر گفته شد هدف از کاشت میلگرد در بتن می تواند یکی از موارد زیر باشد:

  • اتصال المان جدید سازه ای به ستون موجود
  • کاشت میلگرد در ستون جهت اجرای شمشیری راه پله
  • اتصال تیر بتنی در ستون موجود
  • امتداد ستون در جهت ستون موجود
  • مقاوم سازی به روش ژاکت بتنی

کاشت میلگرد در ستون با هدف اجرای امتداد ستون از متداول ترین علل این امر به شمار می رود که جهت تحقق این مهم به چند نکته باید توجه نمود:

  1. حداقل فاصله موجود بین دو میلگرد کاشته شده
  2. قرارگیری تمامی میلگردها داخل خاموت
  3. رعایت کاور یا پوشش بتن

به همین منظور باید توجه داشت که نسبت سطح مقطع میلگردهای کاشت شده در ستون به سطح مقطع ستون بتنی موجود حداقل ۰٫۸% و حداکثر از ۸% تجاوز نکند. کاشت میلگرد در ستون به دلیل محدودیت فضا از نظر بتن موجود عملیات نسبتاً خطیری به شمار می رود زیرا در صورت بروز هر گونه خطای اجرایی می تواند عملکرد سازه ای ستون موجود را تحت تأثیر قرار دهد.

مراحل کاشت آرماتور در بتن

  1. سوراخ کاری به وسیله دستگاه گرد بر و یا دریل برقی، در محل معین، برابر قطر (معمولا قطر مته باید ۲تا ۴ شماره بزرگتر از قطر میلگرد باشد) و عمق تعیین شده
  2. پاکسازی سوراخ حفر شده به وسیله سیستم های دمنده و فرچه دوار و ۳ مرتب تکرار آن تا عاری از گرد و غبار شود
  3. تزریق چسب و ملات اتصال دهنده به میزان دو سوم عمق سوراخ
  4. نصب آرماتور و ورود آن به صورت چرخشی در محل سوراخ

همچنین از کاربردهای غیرسازه ای کاشت میلگرد در بتن می توان به نصب تجهیزات و آویزهای تاسیساتی به المان های بتنی موجود نیز اشاره کرد.

انواع چسب و خمیر کاشت آرماتور و بولت در بتن به دو دسته ی چسب های رزینی دو و سه جزئی و چسب های کاشت آرماتور پایه سیمانی تقسیم بندی می شوند.

یک چسب کاشت بولت مناسب چسبی است که بتوان از آن در سطوح عمودی و افقی استفاده کرد (دارای استحکام در مقابل روان وَردی (تیکسوتروپی) ) ، قابل استفاده در بتن های ترک دار و بدون ترک ، دارای تأییده های بین المللی ، قابل استفاده در شرایط متفاوت بتن و سوراخ در حالت های خشک و مرطوب ، زمان کارکرد مناسب جهت فراهم بودن فرصت کافی برای کاربر جهت نصب ، زمان گیرایی و یا کیورینگ پایین جهت اعمال بار بر روی میلگرد، طول عمر بالا و دارای تاریخ مصرف کافی، مناسب سوراخ های کرگرفته شده، قابل استفاده و عمل آوری در هوای زیر صفر و مقاوم در برابر حرارت ناشی از آتش سوزی…

بهترین روش تست و آزمایش کیفیت میلگرد کاشته شده در بتن انجام آزمایش مقاومت کششی آرماتور با عنوان pull off است . رفتار میلگرد در هنگام کشش بیانگر صحت اجرا می باشد . از نتایج این آزمایش می توان به جاری شدن آرماتور یا میلگرد ، برآمدگی آرماتور و یا قلوه کن شدن بتن اشاره کرد . بدیهی است که بهترین نتیجه آزمایش گزینه جاری شدن میلگرد می باشد .

چکش اشمیت

آزمایش چکش اشمیت

 چکش اشمیت

چکش اشمیت یکی از رایج ترین و پرمصرف ترین ابزارهای ضربه زنی است، که در صورت استفاده صحیح می تواند وسیله ای با ارزش باشد. اما بی دقتی و استفاده بدون تشخیص پارامترهای موثر میتواند به نتایج نادرستی منجر گردد.

چکش اشمیت روشی سریع و کم هزینه و غیرمخرب هم در آزمایشگاه و هم در محل میباشد. این روش را نمیتوان به عنوان جایگزین آزمایش مقاومت فشاری استاندارد استفاده نمود، بلکه روشی است در جهت تعیین یکنواختی بتن در سازه و یا مقایسه تغییر کیفیت بتن در نقاط مختلف یک سازه. این آزمایش نسبت به تغییرات موضعی در جنس بتن حساس میباشد.

برای مثال، وجود ذرات درشت دانه، درست در زیر پیستون، سبب حصول نتیجه کم میشود. به علاوه انرژی ای را که بتن جذب می کند، با مقاومت و هم با سختی آن ارتباط دارد، به طوری که ترکیب مقاومت و سختی کنترل کننده برجهندگی می باشد.

آزمایش چکش اشمیت برجهندگی فقط خواص سطح بتن را می سنجد. به علت پراکندگی موضعی در سختی بتن در یک مساحت کوچک، عدد برجهندگی باید در تعدادی از نقاط نزدیک به یکدیگر تعیین شوند و سپس از نتیجه آنها میانگین گرفته شود.

در چکش اشمیت جرم متصل شده به فنر وجود دارد که با کشیدن فنر تا نقطه مشخصی، مقدار انرژی ثابتی به آن داده می‌شود. این کار با فشار دادن چکش به سطح صاف بتن انجام می‌شود.

بعد از آزاد کردن، جرم تحت اثر بازتاب میله چکش (که هنوز در تماس با سطح بتن است) قرار می گیرد و مسافتی که توسط جرم طی می‌شود و برحسب درصدی از انبساط اولیه فنر بیان می‌شود، عدد بازتاب نامیده می‌شود.

این مقدار توسط یک نشانه که در طول یک مقیاس مدرج است حرکت می‌کند، نشان داده می‌شود. عدد بازتاب یک اندازه مطلق است، چون به انرژی ذخیره شده در فنر و به اندازه جرم وابسته می‌باشد.

چکش اشمیت
چکش اشمیت

مطالعات نشان داده است که سختی سنگ‌ها با مقاومت فشاری تک محوری و مدول کشسانی سنگ‌ها در ارتباط است در واقع سختی یکی از مفاهیم رایج است که برای توصیف رفتاری سنگ‌ها بکار می‌رود.

سختی تابعی از عوامل ذاتی چون نوع کانی‌ها، ابعاد دانه‌ها، چسبندگی مرزی کانی‌ها، مقاومت و رفتار الاستیک و پلاستیک سنگ می باشد. ترکیب و اندرکنش این عوامل، تعیین کننده سختی یک سنگ است. روش های متعددی برای تعیین سختی سنگ پیشنهاد شده است که یکی از این روش‌ها بکارگیری وسیله‌ای به نام چکش اشمیت، معروف به آزمایشهای واجهشی یا دینامیکی است.

در این دسته از آزمایش‌ها از یک چکش یا وزنه برای ضربه زدن به سطح سنگ استفاده می‌شود و ارتفاع واجهش وزنه مقیاسی برای سنجش سختی است. هرگونه رفتار پلاستیک یا تغییر شکل بر اثر ضربه، انرژی الاستیک واجهش چکش را کاهش می‌دهد.

 

این روش که توسط انجمن بین المللی مکانیک سنگ ISRM به صورت استاندارد در آمده است، در مورد سنگ‌های خیلی نرم یا خیلی سخت دارای محدودیت‌هایی بوده است و نتایج قابل اطمینانی ارائه نمی‌دهد. چکش‌های اشمیتی که جهت تخمین مقاومت فشاری بتن بکار می رود انرژی ضربه فنر در حدود ۲٫۲۰۷ ژول دارند که برای سازه های بتنی که مقاومتی بین ۱۰ تا ۷۰ مگاپاسکال دارند مناسب است.

چکش اشمیت
چکش اشمیت
کرگیری از بتن

آزمایش کرگیری یا مغزه گیری از بتن

آزمایش کرگیری از بتن

کرگیری بتن (کر به معنای هسته core ) به عملیات ایجاد یک حفره یا خارج کردن قسمتی از بتن به شکل استوانه‌ ای گفته می شود. کرگیری در واقع یکی از روش های مختلف برش و مغزه گیری از بتن تقویت شده یا بتن معمولی می باشد. کرگیری بتن برای اهداف گوناگونی انجام می شود. مهم ترین آن ها عبارتند از ایجاد مسیر برای عبور لوله، سیم کشی و غیره و همچنین نمونه گیری از بتن برای آزمایش های مختلف که در آزمایشگاه بتن انجام می شود و در آن ها ویژگی های مختلف بتن تعیین می شوند. دریل های مخصوصی برای این کار طراحی و ساخته شده‌اند که در عملیات کرگیری بتن از آنها استفاده می شود. استفاده از دریل های مکانیکی سابقه‌ ای بسیار طولانی در صنعت ساخت و ساز دارد و حتی به دوران باستان نیز باز می گردد. به هر ترتیب امروزه برای کرگیری بتن از دریل های مکانیکی و الکتریکی نیمه اتوماتیک استفاده می کنیم.

کرگیری
کرگیری
  • اهداف کرگیری بتن

در هر پروژه‌ای که در آن سازه های بتنی به کار رفته باشد، به تیم و ابزار مورد نیاز برای کرگیری بتن نیاز خواهیم داشت.کرگیری شامل ایجاد حفره هایی کاملا صاف و صیقلی بر روی دیوارها، زمین و سقف می باشد. از این حفره ها در سازه برای اهدافی هم چون عبور خطوط و سیم تلفن، لوله کشی، داکت لوله، اجرای سیستم اطفای حریق و غیره استفاده می شود. هم چنین گاهی نیاز است تا قطعه‌ای از بتن جهت آزمایش برای تعیین خصوصیات مختلف آن از بتن خارج شود که این کار هم به وسیله‌ی کر گیری صورت می پذیرد و به کل این پروسه آزمایش یا تست مغزه گیری بتن گفته می شود. در برخی پروژه ها احتیاج داریم تا بر روی قسمتی از بتن آزمایش انجام شود و این آزمایش در محل قرار گیری سازه‌ ی بتن نمی تواند به درستی صورت پذیرد. بنا بر این باید قطعه‌ای از بتن جدا شده و به آزمایشگاه بتن برده شود تا آزمایش کرگیری بتن بر روی آن صورت پذیرد. در چنین شرایطی است که احتیاج است تا به وسیله‌ی کرگیری بتن، قطعه‌ ای استوانه ‌ای شکل از بتن خارج شود و به آزمایشگاه تحویل داده شود تا در آن جا بتوان با آزمایش بر روی آن، به ویژگی های مختلف کیفی و کمی آن دست پیدا کرد.

·        نحوه کارکرد دستگاه های کرگیری بتن یا دریل ها

دستگاه های دریل از هسته های الماسی استفاده می کنند. چرا که الماس یکی از سخت ترین مواد شناسایی شده است که می تواند بتن را ببرد. البته بیشتر دریل از فولاد ساخته می شود و فقط در بخش انتهایی یا نوک آن از الماس استفاده می شود. احتمالا این موضوع به خاطر ارزش بالای الماس باشد. اگر بخواهیم کل هسته‌ی یک دریل را از الماس بسازیم، هزینه‌ی هنگفتی را بر روی دست ما می گذارد و البته واقعا هم به چنین کاری نیازمند نیستیم. از نظر راه های ایجاد نیرو برای وارد کردن آن به بتن، دریل ها به دسته های الکتریکی، بادی و هیدرولیک تقسیم می شوند. دریل های مدرن به صورت کاملا خودکار عمل می کنند. این دریل ها را با تنظیماتی بسیار آسان بر روی دیوار نصب می شود و با چرخشی سیصد و شصت درجه‌ ای یک دایره کامل از بتن را می برند که بعد از خارج شدن، یک شکل استوانه تشکیل می شود. قطر استوانه ‌ی بریده شده از بتن بستگی به این موضوع دارد که ما به چه اندازه‌ ای نیاز داریم. دریل ها می توانند استوانه هایی با قطر ۱۰ میلی متر تا ۱۸۰ سانتی متر را ببرند و از بتن خارج کنند.

·        کرگیری بر روی بتن مسلح

کرگیری بتن بر روی بتن های مسلح و غیر مسلح نیز انجام می شود. اما به خاطر ماهیت متفاوت آن ها، تفاوت هایی نیز میان این دو عملیات وجود خواهد داشت. کرگیری از بتن مسلح به مراتب سخت تر و پیچیده تر است و انجام این عملیات زمان بسیار بیشتری را نسبت به بتن معمولی می طلبد. همچنین در این مورد روش های کرگیری بتن محدودی نیز وجود دارد که کمی ما را محدودتر می کند. اما در مورد بتن معمولی و غیر مسلح این گونه نیست. کرگیری در بتن غیر مسلح آسان تر و با سرعت بسیار بالاتری صورت می پذیرد. همچنین در مورد انتخاب روش کرگیری نیز کار ما راحت تر است چرا که گزینه های بیشتری پیش روی ماست و از تنوع بالایی برخوردار است.

کرگیری
کرگیری